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ABSTRACT
The past decades have witnessed the rapid development of im-

age and video coding techniques in the era of big data. How-

ever, the signal fidelity-driven coding pipeline design limits

the capability of the existing image/video coding frameworks

to fulfill the needs of both machine and human vision. In

this paper, we come up with a novel image coding framework

by leveraging both the compressive and the generative mod-

els, to support machine vision and human perception tasks

jointly. Given an input image, the feature analysis is first

applied, and then the generative model is employed to per-

form image reconstruction with features and additional refer-

ence pixels, in which compact edge maps are extracted in this

work to connect both kinds of vision in a scalable way. The

compact edge map serves as the basic layer for machine vi-

sion tasks, and the reference pixels act as a sort of enhanced

layer to guarantee signal fidelity for human vision. By intro-

ducing advanced generative models, we train a flexible net-

work to reconstruct images from compact feature representa-

tions and the reference pixels. Experimental results demon-

strate the superiority of our framework in both human visual

quality and facial landmark detection, which provide useful

evidence on the emerging standardization efforts on MPEG

VCM (Video Coding for Machine)1. Our project website

is available at https://williamyang1991.github.
io/projects/VCM-Face/.

Index Terms— Video Coding for Machine, Image Cod-

ing, Scalable Coding, Generative Compression

1. INTRODUCTION

Image compression has been one of the most fundamental

techniques in media sharing and storage. The typical goal

of image compression is to preserve as much signal fidelity

with the bit-rate constraint. The mainstream hybrid coding

scheme for images, such as JPEG and JPEG 2000 which

typically include transform, quantization, and entropy cod-

ing modules, has been developed for decades. It improves the

signal fidelity-driven metrics significantly and benefits human

vision continuously.
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However, in the big data era when massive amounts of

data generated everyday needs to be compressed, stored and

analyzed, existing compression methods get into troubles to

fulfill the needs of both machine and human vision. The se-

quential compression and analysis paradigm is expensive and

even intractable if we expect to maintain the quality of the

reconstructed videos. On the other way, when the compres-

sion ratio is high [1], the performance of machine vision tasks

degrades significantly.

Several works have made efforts in addressing the prob-

lem of video analytics on massive data by directly extract-

ing and compressing features used for machine vision tasks

into a compact form, rather than compressing the whole

high-quality videos. Several typical features are developed,

e.g. Scale-Invariant Feature Transform (SIFT) [2], Compact

descriptors for visual search (CDVS) [3] for image under-

standing, and skeleton for human action recognition [4]. In

this way, the process of feature extraction, compression and

transmission becomes light-weighted and less amount of bit-

streams are to be handled.

Though these features are compact and highly effective

for machine vision tasks, they cannot support machine and

human vision tasks jointly in a flexible way, which is ex-

pected in the new coding paradigm of video coding for ma-

chine (VCM). This is due to the huge gap between feature

coding for machine vision and signal encoding for human vi-

sion. Existing solutions only pay attention to one of these two

aspects. In the big data context, it is still an open problem

to support a scalable coding paradigm to satisfy both kinds

of vision. Some works show potential ways to address this

problem. In [5, 6], generative models are used to reconstruct

the images based on the encoded features with very few bits

towards conceptual coding. In [7], the bitstreams generated

by a Variational Auto-Encoder (VAE) is used for image un-

derstanding. However, these attempts are still far away from

the ideal targets of VCM: the requirement of machine vision

is first satisfied to provide the fast analysis, and more bit-rates

are additionally used to further improve the visual quality in

the reconstruction.

In our work, we take a further step to bridge the gap be-

tween image compression for both machine and human vi-

sion. By leveraging both compressive and generative models,

a scalable image coding framework is constructed to support

machine and human vision tasks jointly. In this framework,
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the source image is represented via a compressive model as

edge maps and sparse key reference pixels. The edges are pa-

rameterized into vectors as the base layer of the coding bits

to obtain a compact feature representation, which only takes

a small portion of coding bits. Furthermore, the information

in our edge maps is shown to be efficient for machine vision

tasks, e.g. face landmark detection. To better reconstruct the

high-quality frame, reference pixels, sampled in accordance

with the edges, can be transmitted as a second layer to the de-

coder. With the reference pixel values, the decoder is able to

faithfully reconstruct the image. We adopt a generative model

to reconstruct high-quality images from the sparse edge rep-

resentations. Experiments on both machine and human vision

show significant improvements compared with existing meth-

ods, which provide useful evidence on the emerging standard-

ization efforts on MPEG VCM.

In summary, the contributions of this work are threefold:

• We propose an image coding framework that leverages

the compressive model to extract highly compact rep-

resentations of an image and faithfully reconstruct the

original image from the bitstreams with the generative

model.

• We design the vision-driven compact representations

for image compression, where the critical image struc-

ture and color information is sparsely encoded. A deep

generative network is further proposed to effectively re-

cover images from our compact representations.

• A good balance between human and machine vision is

stricken, where we achieve 90% and 73% human vi-

sion preferences in terms of fidelity and aesthetics, re-

spectively, and achieve an error drop of 44.75% in the

machine vision facial landmark detection task.

The rest of this paper is organized as follows. Section 2

reviews related works. Section 3 presents the proposed scal-

able image coding method. Experimental results are shown in

Section 4 and concluding remarks are given in Section 5.

2. RELATED WORK

Feature based Image Coding. Besides the mainstream trans-

form based codecs [8, 9], there have been other approaches

to explore encoding representative image features for recon-

struction. In [6], a generative compression framework is pro-

posed to encode an image into low-bit-rate latent code and ex-

ploit recurrent generative networks for reconstruction. With

compressive variational auto-encoders (VAE) [10], genera-

tive networks are also utilized in [5] to reconstruct images

from edges and latent features produced by neural networks.

Though these frameworks encode compact feature represen-

tations of images, they are not shown to both satisfy the need

of human and machine vision. In [7], a deep-based encoder

is designed to produce latent code that simultaneously serves

for machine vision tasks and image reconstruction. However,

the encoded feature representation is non-scalable as the full

bit-stream is needed to support the machine vision tasks, ne-

glecting the sparsity features for machine vision. In this work,

we explore to encode a base layer of features to facilitate ma-

chine vision and an additional layer to improve signal fidelity.

Image Generation. Image generation aims to generate new

images. Recent image generation methods focus on the pow-

erful generative adversarial networks (GAN) [11] to learn

data distribution using two adversarial networks. By incorpo-

rating additional information such as the text, labels, segmen-

tation maps and edges as inputs, users are able to control the

output with these conditions. The advanced GAN has shown

impressive capability of data distribution learning to recover

abundant information that well matches human visions from

limited conditions. Such an advantage is also verified by the

closely related image inpainting task, where plausible im-

age content is generated from very sparse contextual infor-

mation [12]. It demonstrates the potential for vision-driven

image coding, which forms our research focus in this paper.

3. PROPOSED METHOD

In this section, we describe our vision-driven image compres-

sion framework. As shown in Fig. 1, we first extract sparse

edges to depict the key structure information of the input im-

age (Section 3.1). We then extract vision-driven compact rep-

resentations through compressive analysis over the edges and

the original images. (Section 3.2). Finally, we train a deep

neural network to reconstruct the original image from our

compact representation. (Section 3.3).

3.1. Sparse Edge Extraction

Edges are one of the most highly abstract and sparse image

representations. Edges depict the key structure information

of the image, which is consistent with the human vision. Hu-

mans are able to identify the objects from several lines and

even infer fine details such as the colors and textures. To this

end, we are inspired to build our compact representation using

sparse edges. We will show later that images can be plausibly

reconstructed purely from its edges based on the robust data

distribution learned by GAN.

Specifically, for an input image I , we first use fast edge

detection [13] based on structured forests to detect the edge

map of I . Then, we follow the post process suggested by

pix2pix [14] to binarize the edge maps and discard trivial

edges that contain less than 10 pixels.

Meanwhile, color is another critical important informa-

tion for human perception. Color constitutes the main char-

acteristics of the spaces circumscribed by edge lines. More-

over, as a basic low-level feature, it can even impact some

high-level concepts such as emotions. Thus, in addition to

the edges extracted, we are going to extract the compact color

representations, which will be detailed in the next subsection.
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Fig. 1: Overview of the proposed vision-driven image coding framework.

3.2. Compact Representation Extraction

Although edge maps are sparse representations of images,

coding such maps into compact bit-streams is still not

straight-forward. Existing works in feature-based image com-

pression exploit recurrent generative neural networks [6] or

resort to HEVC Screen Content Coding [5, 15]. However,

these approaches do not fully exploit the sparsity of the edge

maps, as they are mostly based on pixel-level representation

or partitioning, and not designed to trace edges. It results in

inefficiency in coding binary maps consisting only of edges

of uniform width.

To explore a more effective way to encode the edge maps,

in our approach, we propose to trace the edges into vector

graphics. We adopt the image tracing tool [16] to convert

the binary edge image into vectorized representations. The

edges are approximated into straight lines and Bézier curves,

following the Scalable Vector Graphics (SVG) syntax. To

be specific, we use three kinds of operation markers, namely

Move, Line and Curve. Operation M(x, y) indicates moving

to point (x, y) without drawing a line. L(x, y) refers to draw-

ing a straight line from the last point (either moved to or ended

a line or curve) to the target point (x, y). C(pa, pb, pt) denotes

the operation to draw a cubic Bézier curve from the current

point to the target point pt, with the intermediate points pa and

pb. As edge maps of natural images are usually smooth, they

can be well approximated by the above-mentioned lines and

curves, which only takes a small number of parameters. To

further squeeze out redundancy in the parameters, we adopt

the Prediction for Partial Matching (PPM) [17] compression

scheme to losslessly compress the quantized parameters for

the lines and curves into compact bit-streams.

While edge maps provide much of the information about

the structure, the information to restore color representation

is lost during the parameterization. To support the scalable

coding scheme, we propose to embed pixel-level representa-

tion as a second layer in accordance with the encoded struc-

tural description. We sparsely sample pixels near the lines and

curves. As shown in Fig. 2, for a straight line, we sample two

pa

ps pt

pb

p1

αα

p1 p2

p1

p2
ps

ps

pt
pt

Fig. 2: Illustration of our vectorized structure representation

and point samplings for color representation. (a) A vectorized

edge map. (b) For straight segments, two points are selected

as the reference, according to the slope α. (c) For Bézier

curves, one inner point is selected.

points near the midpoint. The slope of the line is calculated

to determine whether the two points are chosen horizontally

or vertically. If the line is more close to horizontal (α < 45◦),

the two reference points are sampled vertically, and it goes

horizontal if α > 45◦. For a Bézier curve with starting point

ps, intermediate points p1, p2 and target point pt, we first ex-

tract the contact point of the curve and the tangent line in

parallel with the vector −−→pspt. We calculate the slope of the

tangent line to determine whether to choose the point verti-

cally or horizontally, just like the straight lines. Additionally,

to control the bit-rate and maintain the most informative in-

formation from the pixels, we only sample the point at the

inner side of the curve, which is expected to have greater gra-

dients and contain more information. The pixel, represented

in RGB value, is signaled to the decoder in order as a second

layer to provide more fidelity in color. The decoder places the

received reference color points following the same rules that

the encoder extracts those points, based on the edge maps.

Thus, no additional bits are needed to record the positions of

the selected pixels.
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Fig. 3: Visual comparison with JPEG compression. (a) Input image. (b)-(d) Images compressed by JPEG using quality

parameter of 4, 7 and 8, respectively. (e) Our decoded images using the encoded edge representations. (f) Our decoded images

using both the encoded edge representation and color representation. For each reconstructed image, its bit-rate (bit per pixel,

bpp) is shown in the lower left black box.

3.3. Adversarial-based Image Reconstruction

Given the proposed compact representation of edges and col-

ors, we are going to recover an image as close as possible

to the original image. The main idea is to leverage GAN to

learn robust data distribution, which maps our sparse repre-

sentation back to the original image spaces and benefits both

human visual quality and machine visual tasks.

Specifically, we first convert our compact representation

back to the image domain by rendering the vector graphic as

a normal bitmap E. The sparsely sampled points are rendered

as a one-channel image mask M where 1 means the corre-

sponding pixel is sampled and 0 vice versa. And finally, an-

other three-channel image C is provided with the color values

of the sampled pixels at the corresponding locations. The re-

maining unknown pixels are set to 0. Through the conversion,

we transform our decoding task as a standard machine vision

task of image inpainting augmented with extra edge informa-

tion. C can be regarded to be obtained by the original image

I with missing regions indicated by M .

Taking use of the advancement of image inpainting re-

search, we design our decoding network as pix2pix [14]. It

contains fully convolutional encoders and decoders, where

the low-level information is conveyed to the outputs via skips

connections to enforce the structure and color constraints

from the inputs. Let our generator and discriminator denoted

as G and D, respectively. Then G is used to map the input

of E, C and M to a reconstructed image IG = G(E,C,M)
to approach I in both color and structure senses through a

reconstruction loss:

Lr = E [λ1‖IG − I‖+ λ2SSIM(IG, I)] , (1)

where L1 measures the color discrepancy between the recon-

structed image and I and SSIM [18] emphasizes the structural

similarity, weighted by λ1 and λ2, respectively. In additional

to these human-perceptual criteria, we incorporate perceptual

loss [19] to enhance the machine-perceptual quality of IG,

Lp = E [λ3PERC(IG, I)] . (2)

Finally, we use hinge loss [20] as our adversarial objective

function to learn the data distribution:

LG = −E[D(IG, E,M)], (3)
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Fig. 4: Illustration of the averaged normalized point-to-point

error (NME) on facial landmark detection and bit-rate of

JPEG compression and the proposed method.

LD = E[ReLU(τ +D(IG, E,M))]

+ E[ReLU(τ −D(I, E,M))],
(4)

where τ = 10 is a margin parameter. Here we use channel-

wise concatenation to feed multiple inputs into G and D.

Reconstruct without RGB. Note that for some high-level

machine vision tasks such as image segmentation and im-

age detection that do not rely on color information much, our

framework is scalable to reconstruct images purely from E
without M and C, which further saves bit-rate. To be specific,

we only need to revise the input channel number of the first

layer of G and D such that G receives one-channel input E
and D receives four-channel input (I, E) or (IG, E), respec-

tively. Beyond that, other settings are the same as our afore-

mentioned reconstruction process with color information.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the

proposed method for both the task of human vision and ma-

chine vision. We first evaluate our method with respect to

human visual quality both qualitatively and quantitatively in

Section 4.1. Then we test our method on the high-level fa-

cial landmark detection task in Section 4.2. We choose the

VGGFace2 [21] dataset for evaluation considering the perva-

siveness and importance of facial images in our daily life and

industry. We filter the images in VGGFace2 that have small

resolution and low quality, and finally use 39,122 images from

the training set to train our reconstruction network and 20,665

images from the testing set for performance evaluation. To

train our network, we set λ1 = 100, λ3 = 1 and τ = 10.

λ2 is set to 0 and 1000 for the human vision evaluation and

machine vision evaluation, respectively.

4.1. Human Vision: Visual Quality Evaluation

Qualitative evaluations. In Fig. 3, we present a visual com-

parison of the proposed method with JPEG compression un-

Fig. 5: Cumulative error distribution of JPEG compression

and the proposed method on facial landmark detection.

Table 1: The preference ratio on fidelity and aesthetics of

different methods at different bit-rates.

Method Bit-Rate (bpp) Fidelity Aesthetics

JPEG (qp = 4) 0.152 0.00 0.00

our (E) 0.134 0.04 0.24

JPEG (qp = 7) 0.214 0.02 0.01

JPEG (qp = 8) 0.234 0.04 0.02

our (E + C) 0.209 0.90 0.73

der different quality factor parameter (qp), which are se-

lected to matches the bit-rate of our method for fair compari-

son. Specifically, for our reconstructed images decoded with-

out color cues, we show the JPEG compression results with

qp = 4; while for our reconstructed images decoded with full

color and structure cues, we use qp = 7 and qp = 8. It can

be observed that JPEG compression yields distinct block arti-

facts, which greatly decrease visual quality. By comparison,

our method produces more natural results.

Quantitative evaluations. We perform user studies for quan-

titative evaluations. Besides the four cases shown in Fig. 3,

we randomly select six cases to add up to 10 cases from the

testing data shown to the participants. Each subject is asked to

select one from the five results that best matches the original

image (Fidelity) and has the best visual quality (Aesthetics).

A total of 10 subjects participate in this study and a total of

200 selections are tallied. The preference ratio is used as the

evaluation metric. It is calculated as the ratio of a method

selected in all comparisons with this method. As shown in

Table 1, the proposed structure-color-hybrid method obtains

the best average preference ratio of 0.90 and 0.73 for both

the fidelity and aesthetics, respectively, outperforming JPEG

compression under the similar bit-rate. The user study quan-

titatively verifies the superiority of our method.
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4.2. Machine Vision: Landmark Detection

The machine vision performance of our method is verified

on the high-level facial landmark detection task. We per-

form facial landmark detection [22] on the original VG-

GFace2 [21] dataset and the reconstructed dataset by JPEG

and our method. Detection results on the original data are

served as ground truth. We then calculate the normalized

point-to-point error (NME) [23] between the detection results

on the compressed data and the ground truth. Fig. 4 illus-

trates the averaged NME and the bit-rate of JPEG compres-

sion and our method. It can be clearly seen that our method

achieves much fewer errors at the similar bit-rate compared

to JPEG. Specifically, NME of our method without color

cues is only 4.03%, which is 44.75% lower than JPEG under

qp = 4. Meanwhile, with color cues, our method achieves

merely 3.33% NME, 1.15% lower than JPEG under qp = 8.

Fig. 5 further shows the cumulative error distribution, where

more than 90% of the images reconstructed by the proposed

method have tiny errors less than 5%, showing great robust-

ness.

5. CONCLUSION AND DISCUSSION

In this paper, we present a new image coding framework to fa-

cilitate both human vision and machine vision. The input im-

age is first analyzed and compressed as the compact structure

and color representations. Leveraging the advanced genera-

tive model in machine vision, we train a network to faithfully

reconstruct images from the compact representations. Exper-

imental results demonstrate the superiority of the proposed

method in both human visual quality and facial landmark de-

tection. This paper presents the first attempt towards VCM

with respective to image coding via scalable feature-based

compression. As a future direction, we would like to explore

temporal feature modeling for video coding to more perva-

sively benefit human vision and machine vision.
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